Article ID Journal Published Year Pages File Type
751040 Sensors and Actuators B: Chemical 2011 7 Pages PDF
Abstract

Vic-dioximes, a class of organic chemical compounds, are proposed and characterized for the first time as sensitive materials for volatile organic compound sensing with sorption based chemical gas sensors. Their peculiar sensing properties described in this work originate in the oxime functional group which is a powerful H bond donor interacting strongly but reversibly with H bond acceptors. These specific interactions result in a high preferential enrichment of analyte molecules with H bonding acceptor capabilities in the sensitive material. Accordingly, sensitivity and selectivity for these compounds of vic-dioxime based sensors are high. The advantageous sensing properties are demonstrated in this work with quartz crystal microbalance sensors using 11 selected volatile organic compounds and a set of vic-dioximes varied in their substituents. Vic-dioximes with short alkylthiol substituents were found highly sensitive to such H bond acceptors as organic amines, alcohols, and esters with partition coefficients up to 26,000. At the same time they showed low affinity for aromatic compounds and chlorocarbons. Vic-dioximes are considered powerful sensing materials and interesting for practical use in chemical gas sensor arrays.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,