Article ID Journal Published Year Pages File Type
751422 Sensors and Actuators B: Chemical 2010 10 Pages PDF
Abstract

Metal oxide (MOX) gas sensors have been widely used for years. Temperature modulation of gas sensors is as an alternative to increase their sensitivity and selectivity to different gas species. In order to enhance the extraction of useful information from this kind of signals, data processing techniques are needed. In this work, the use of self-modelling curve resolution techniques, in particular multivariate curve resolution-alternating least squares (MCR-ALS), is presented for the analysis of these signals. First, the performance of MCR in a synthetic dataset generated from temperature-modulated gas sensor response models has been evaluated, showing good results both in the resolution of gas mixtures and in the determination of concentration/sensitivity profiles. Secondly, experimental confirmation of previously obtained conclusions is attempted using temperature-modulated MOX sensors together with MCR-ALS for the analysis of carbon monoxide (CO) and methane (CH4) gas mixtures in dry air. Results allow confirming the possibility of using the proposed approach as a quantitative technique for gas mixtures analysis, and also reveal some limitations.

Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,