Article ID Journal Published Year Pages File Type
75152 Microporous and Mesoporous Materials 2010 4 Pages PDF
Abstract

Microporous semiconducting crystal structures are exceedingly rare and their usefulness for applications typical for microporous semiconductors is largely related to their sorption properties and to their semiconductor response to sorption. The sorption properties of the unique crystalline microporous semiconducting antimony(III) oxide telluride K-SBC-1 were evaluated by means of temperature-resolved diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermogravimetric analysis (TGA/DSC), and X-ray powder diffraction. K-SBC-1 was found to demonstrate heat-induced reversible sorption and desorption-induced rearrangements of guest water molecules. Upon heating to 300 °C 66% of the water content of K-SBC-1 desorbed. Desorption of water could be made more facile through activation of K-SBC-1 by heat treatment and then occurred at room temperature in a flow of nitrogen. These are unique properties compared to the few known related structures and thus represent a significant advancement in the field of microporous semiconductors.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,