Article ID Journal Published Year Pages File Type
753195 Solid-State Electronics 2010 10 Pages PDF
Abstract

Large scale 6T SRAM beyond 65 nm will increasingly rely on assist methods to overcome the functional limitations associated with scaling and the inherent read stability/write margin trade off. The primary focus of the circuit assist methods has been improved read or write margin with less attention given to the implications for performance. In this work, we introduce margin sensitivity and margin/delay analysis tools for assessing the functional effectiveness of the bias based assist methods and show the direct implications on voltage sensitive yield. A margin/delay analysis of bias based circuit assist methods is presented, highlighting the assist impact on the functional metrics, margin and performance. A means of categorizing the assist methods is developed to provide a first order understanding of the underlying mechanisms. The analysis spans four generations of low power technologies to show the trends and long term effectiveness of the circuit assist techniques in future low power bulk technologies.

Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , ,