Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
75320 | Microporous and Mesoporous Materials | 2009 | 8 Pages |
This study explored the possibility of using waste organic solvent as the source of volatile organic compound (VOC) and it served as a reducing agent of selective catalytic reduction (SCR) deNOx process, in which the VOC itself can be catalytically oxidized on the mesoporous Cu and/or Al substituted MCM-41 catalysts. The synthesized Cu–Al–MCM-41 catalysts were extensively characterized by powder low-angle X-ray diffraction (XRD), N2 adsorption–desorption measurements, transmission electron microscopy (TEM), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), 27Al magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma–mass spectrometer (ICP–MS) analysis. The XRD, TEM and N2 adsorption–desorption studies clearly demonstrated the presence of a well ordered long range hexagonal array with uniform mesostructures. The Cu–Al–MCM-41 materials showed a better long-term-stability than that of copper ion-exchanged H–ZSM-5 (Cu–ZSM-5) zeolite. The Cu–Al–MCM-41 material was found to be an efficient catalyst than that of Cu–MCM-41 without aluminum for the simultaneous catalytic abatement of NOx and VOCs, which was attributed to the presence of well dispersed and isolated Cu2+ ions on the Cu–Al–MCM-41 catalyst as observed by UV–Vis DRS and EPR spectroscopic studies. And the presence of aluminum (Al3+ ions) within the framework of Cu–Al–MCM-41 stabilized the isolated Cu2+ ions thus it led to higher and stabilized activity in terms of NOx reduction.