Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
75321 | Microporous and Mesoporous Materials | 2009 | 4 Pages |
A supercritical fluid process method has been developed for fabricating mesoporous zirconia thin films with enhanced thermal stability up to a temperature of 850 °C. Both the supercritical CO2 and the precursor tetramethoxysilane play an important role in enhancing the thermal stability of these films. Powder X-ray diffraction, Atomic force microscope, spectroscopic ellipsometry and transmission electron microscope analyses show that the thin films fabricated by the supercritical fluid process method have a highly ordered mesoporous structure, a nanocrystalline inorganic framework and a high optical transparency. These zirconia thin films have potential applications as electrodes in solid oxide fuel cells where high thermal stability is essential.