Article ID Journal Published Year Pages File Type
7543 Biomaterials 2011 12 Pages PDF
Abstract

Biodegradable polymers can serve as barriers to prevent the post-operative intestinal adhesion. Herein, we synthesized a biodegradable triblock copolymer poly(ɛ-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ɛ-caprolactone-co-lactide) (PCLA–PEG–PCLA). The concentrated polymeric aqueous solution was injectable, and a hydrogel could be rapidly formed due to percolation of a self-assembled micelle network at the body temperature without requirement of any chemical reactions. This physical hydrogel retained its integrity in vivo for a bit more than 6 weeks and was eventually degraded due to hydrolysis. The synthesized polymer exhibited little cytotoxicity and hemolysis; the acute inflammatory response after implanting the hydrogel was acceptable, and the degradation products were less acidic than those of other polyester-containing materials. A rabbit model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative peritoneal adhesion has been found in the group of in situ formed PCLA–PEG–PCLA hydrogels.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,