Article ID Journal Published Year Pages File Type
7549513 Statistics & Probability Letters 2015 7 Pages PDF
Abstract
Let (Xt)t⩾0 be a Feller process generated by a pseudo-differential operator whose symbol satisfies ‖p(⋅,ξ)‖∞⩽c(1+|ξ|2) and p(⋅,0)≡0. We prove that, for a large class of examples, the Hausdorff dimension of the set {Xt:t∈E} for any analytic set E⊂[0,∞) is almost surely bounded below by δ∞dimHE, whereδ∞≔sup{δ>0:lim|ξ|→∞infz∈RdRep(z,ξ)|ξ|δ=∞}. This, along with the upper bound β∞dimHE with β∞≔inf{δ>0:lim|ξ|→∞sup|η|⩽|ξ|supz∈Rd|p(z,η)||ξ|δ=0} established in Böttcher, Schilling and Wang (2014), extends the dimension estimates for Lévy processes of Blumenthal and Getoor (1961) and Millar (1971) to Feller processes.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,