Article ID Journal Published Year Pages File Type
75516 Microporous and Mesoporous Materials 2008 9 Pages PDF
Abstract

Gd3+-doped mesoporous TiO2 (m-TiO2) nanoparticles were synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), diffuse reflection spectra (DRS), and linear sweep voltammetry (LSV) etc. Experimental results indicate that different Gd3+-doping levels make great impact on the photocatalytic activity of the obtained m-TiO2 nanoparticles and the 3.5 at.% Gd3+-doped m-TiO2 nanoparticles calcined at 300 °C exhibit the optimal photoactivity on the degradation of Rhodamine B (RB), which is as nearly two times as that of the commercial photocatalyst P25. The mesoporosity, anatase wall as well as the cooperativity of ‘lattice Gd3+’ and ‘free Gd3+’ in the m-TiO2 nanoparticles can be used to explain the observed high photoactivity of the doped m-TiO2 nanoparticles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,