Article ID Journal Published Year Pages File Type
75894 Microporous and Mesoporous Materials 2009 8 Pages PDF
Abstract

The diffusion of alkyl-substituted aromatic molecules in H-ZSM-5 was investigated by means of the frequency response method decoupling particle size effects and intracrystalline diffusion. For zeolite crystals above 5 μm average diameter, the transport in the zeolite pores exerts a significant effect on the overall transport causing anisotropic diffusion as the aspect ratio of the aromatic molecules increases. Diffusion of benzene is nearly isotropic, while p-xylene shows marked differences between the diffusive processes in the straight and sinusoidal channel system of ZSM-5. The isotropic diffusion of benzene is rationalized on the basis of its ability to reorient between the two channel systems without major hindrances. For p-xylene, switching between the channels is only possible by energetically unfavorable rotational motions leading to a low probability for changing between both channel systems.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,