Article ID Journal Published Year Pages File Type
759474 Communications in Nonlinear Science and Numerical Simulation 2010 13 Pages PDF
Abstract

The effects of variable electric conductivity and temperature dependent viscosity on hydromagnetic heat and mass transfer flow along a radiate isothermal inclined permeable surface in a stationary fluid in the presence of internal heat generation (or absorption) are analyzed numerically presenting local similarity solutions for various values of the physical parameters. The research shows that the difference in the results between variable Prandtl number and constant Prandtl number are significant when fluid viscosity strongly dependents on the temperature. The results also show that skin friction coefficient, Nusselt number and Sherwood number are lower for the fluids of constant electric conductivity than those of the variable electric conductivity.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,