Article ID Journal Published Year Pages File Type
759901 Communications in Nonlinear Science and Numerical Simulation 2008 18 Pages PDF
Abstract

A new universal theory of dynamical chaos in nonlinear dissipative systems of differential equations including ordinary and partial, autonomous and non-autonomous differential equations and differential equations with delay arguments is presented in this paper. Four corner-stones lie in the foundation of this theory: the Feigenbaum’s theory of period doubling bifurcations in one-dimensional mappings, the Sharkovskii’s theory of bifurcations of cycles of an arbitrary period up to the cycle of period three in one-dimensional mappings, the Magnitskii’s theory of rotor type singular points of two-dimensional non-autonomous systems of differential equations as a bridge between one-dimensional mappings and differential equations and the theory of homoclinic cascade of bifurcations of stable cycles in nonlinear differential equations. All propositions of the theory are strictly proved and illustrated by numerous analytical and computing examples.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,