Article ID Journal Published Year Pages File Type
759941 Communications in Nonlinear Science and Numerical Simulation 2010 11 Pages PDF
Abstract

We introduce stochastic models of chemotaxis generalizing the deterministic Keller–Segel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean’s approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cells are neglected, we recover the Keller–Segel model governing the smooth density field. We also consider hydrodynamic and kinetic models of chemotaxis that take into account the inertia of the particles and lead to a delay in the adjustment of the velocity of cells with the chemotactic gradient. We make the connection with the Cattaneo model of chemotaxis and the telegraph equation.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,