Article ID Journal Published Year Pages File Type
760194 Communications in Nonlinear Science and Numerical Simulation 2009 12 Pages PDF
Abstract

Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two different systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients about their unknown mean values are modeled through white Gaussian noise produced by the Weiner process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero. To demonstrate the effectiveness of the proposed technique, it is applied to the Lorenz–Chen and the Chen–Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic systems in noisy environment.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,