Article ID Journal Published Year Pages File Type
76198 Microporous and Mesoporous Materials 2008 7 Pages PDF
Abstract

Mesoporous alumina layers have attracted attention for their potential use in ultrafiltration of salts, as a heterogeneous catalyst support, an adsorbent in environmental cleanup, and in petroleum refinement. The ability to control the fast hydrolysis rate of the inorganic precursors using simple and inexpensive routes is important for that potential to be realized. Herein, we introduce a novel and facile route to synthesize mesoporous alumina thin films from the combination of inexpensive and commercially available copolymer with aluminum chloride or nitrate (salts) in an EtOH–surfactant–NH3 · H2O–salts (EsNs) system through the evaporation-induced self-assembly (EISA) method. Mesoporous alumina layers obtained utilizing the EsNs system have ordered and tunable pore structures. The ability to easily control the mesophases of the alumina layers within a short time provides distinct advantages over previously reported synthesis procedures. Most importantly, we demonstrate that the binding of surfactant and NH3 · H2O for the formation of hydrogen bond between them in the EsNs system controls the fast hydrolysis rate of the inorganic species. This allows for the synthesis of nanocrystalline alumina layers via the aluminum oxo-clusters’ assembly with the surfactant. Such simple route may be applied in the synthesis of other non-silica mesostructured oxides.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,