Article ID Journal Published Year Pages File Type
7643 Biomaterials 2011 9 Pages PDF
Abstract

Notch signaling has been recognized as a key pathway to regulate the proliferation and differentiation of hematopoietic stem cells (HSC). In this study, the orientation-regulated immobilization of a Notch ligand was designed to achieve the efficient Notch ligand–receptor recognition for the ex vivo proliferation of a bone marrow cell population containing HSC. Protein A was chemically conjugated onto aminated glass substrates, followed by immobilizing a recombinant chimeric protein of Jagged1 and Fc domain (Jagged1-Fc) through the biospecific binding between protein A and Fc domain. Protein A adsorption was suppressed for the Jagged1-Fc-immobilized substrates, in contrast to the Jagged1-Fc-coated ones, indicating the orientation-regulated immobilization of Jagged1-Fc for the substrates. Mouse lineage negative cells (Lin−) were cultured on the Jagged1-Fc-immobilized substrates. Flow cytometric analyses demonstrated that c-Kit+, Sca-1+, Lin−, and CD34− cells of an HSC population was significantly proliferated on the Jagged1-Fc-immobilized substrates 6 days after culture, whereas no proliferation was observed for the Jagged1-Fc-coated substrates in a random manner or Jagged1-Fc-immobilized ones with a Notch signaling inhibitor. It is concluded that the orientation-regulated immobilization of Jagged1-Fc increased the efficiency of Jagged1 to recognize the Notch receptors, resulting in the promoted ex vivo proliferation of the HSC population.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,