Article ID Journal Published Year Pages File Type
7704235 Bioelectrochemistry 2018 30 Pages PDF
Abstract
The photoelectrochemical electrode has been intensively studied in recent years as a means of generating electricity from light through the use of intact thylakoid membranes or highly purified photosystem II. PSII-enriched thylakoid membrane fragments (PSII-BBY), also have the potential to construct the photoelectrochemical anode. In this study, we examined the feasibility of utilizing PSII-BBY preparations to construct a relatively inexpensive photoelectrochemical anode with a comparable current density and a reasonable stability. Intact thylakoid membrane based photoelectrochemical electrode was also constructed to compare with the PSII-BBY based photoelectrochemical electrode with respect to the protein activity and current density. In addition, the practicability of replacing the popular gold nanoparticle modified gold slide with multi-walled carbon nanotube modified indium tin oxide coated slides was tested. In order to understand the surface change during slide surface modification, an atomic force microscope (AFM) was used to image the topography of the slide. Above all, we observed a current density of 20.44 ± 1.58 μA/cm2 when PSII-BBY was used to construct the photoelectrochemical anode. Moreover, the PSII-BBY based photoelectrochemical anode showed high stability over time with the current decreasing at a rate of 0.78%/h.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,