Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7704240 | Bioelectrochemistry | 2018 | 12 Pages |
Abstract
Biodegradable beta-tricalcium phosphate (β-TCP) particle reinforced magnesium metal matrix composites (Mg-MMC) have attracted increasing interest for application as implant materials. This investigation was conducted to study the effect of cooling rate on the microstructure and corrosion behavior of a biodegradable β-TCP/Mg-Zn-Ca composite. The composite was fabricated under a series of cooling rates using a wedge-shaped casting mold. The microstructure of the composite was examined by optical and scanning electron microscopy, and the corrosion behavior was investigated using an electrochemical workstation and immersion tests in a simulated body fluid (SBF). Faster cooling rates were shown to refine the secondary phase and grain size, and produce a more homogenous microstructure. The refined microstructure resulted in a more uniform distribution of β-TCP particles, which is believed to be beneficial in the formation of a stable and compact corrosion product layer, leading to improved corrosion resistance for the composite.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Qiang Yuan, Y. Huang, Debao Liu, Minfang Chen,