Article ID Journal Published Year Pages File Type
7704492 Bioelectrochemistry 2018 6 Pages PDF
Abstract
A photo-driven bioanode was constructed using the thylakoid membrane from spinach, carbon nanotubes, and an artificial mediator. By considering a linear free-energy relationship in the electron transfer from the thylakoid membrane to the mediators, and the oxygen resistance of the reduced mediators, 1,2-naphthoquinone was selected as the most suitable mediator for the photo-driven bioanode. Water-dispersed multi-walled carbon nanotubes served as scaffolds to hold the thylakoid membrane on a porous electrode. The constructed photo-driven bioanode exhibited a photocurrent density of over 100 μA cm−2 at a photon flux density of 1500 μmol m−2 s−1.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,