Article ID Journal Published Year Pages File Type
7705248 International Journal of Hydrogen Energy 2018 10 Pages PDF
Abstract
Development of photocatalysts with characters of low-cost, environment friendliness, visible light response and good performance is vital for the transformation of solar energy into hydrogen fuel. Here, we constructed CoPCdS nanorods hybrid composites via a novel two-step in-situ growth method for the first time. The obtained CoPCdS composites exhibited remarkably enhanced photocatalytic performance and excellent stability in comparison with bare CdS nanorods. Notably, the optimum H2 evolution rate of 1 wt%CoPCdS was 9.11 times higher than that of pristine CdS. The apparent quantum efficiency of the photocatalyst was calculated to be 11.6%. The superior activity of this material could be attributed to the role of well dispersed CoP nanoparticles and the intimate interface between CoP cocatalysts and CdS nanorods, which efficiently accelerated the separation and transfer of photogenerated electrons. This work provided a new in-situ growth method for the preparation of transition metal phosphides coated photocatalysts with boosted photocatalytic activity of hydrogen evolution.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,