Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7705303 | International Journal of Hydrogen Energy | 2018 | 7 Pages |
Abstract
Solar photocatalytic hydrogen production from water has been regarded as an ideal way addressing world energy and environmental crises. The technology has long relied on the development of an efficient photocatalyst. In addition to its photocatalytic performance, the large-scale production of certain photocatalyst from the viewpoint of particle application remains a challenge yet has received insufficient focus. Herein, we report an efficient and practical batch preparation system based upon hydrothermal method to the scalable production of chalcogenide nanoparticle photocatalyst. Taking the synthesis of Cd0.5Zn0.5S (CZS) twinned photocatalyst as an example, the outcome of CZS photocatalyst could reach â¼0.8Â kg in this batched synthesis, which is about 390 times of the lab-scale production in mass amount. It was found that the twinned structure and visible-light absorption property were well maintained. Although further measurements toward the photocatalytic activity indicate slight decrement on solar H2 generation compared to the lab-scale synthesized CZS photocatalyst, a high quantum efficiency of about 40.5% at 425Â nm remained. The photocatalytic reaction could also stably proceed for 200Â h without notable decay of H2-evolution rate. This work thus provides a powerful means for facile scaling up the chalcogenide nanoparticle photocatalyst at the kilogram level with both high quality and good reproducibility.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Wenlong Fu, Fei Xue, Maochang Liu,