Article ID Journal Published Year Pages File Type
7705664 International Journal of Hydrogen Energy 2018 8 Pages PDF
Abstract
In the present work, the effects of inlet velocity and channel height (H0 = 0.6 mm, 1.0 mm and 1.4 mm) on the mixing performance, flame stability limit and combustion efficiency of H2 and air in a 2D planar micro-combustor with a separating plate were studied numerically. The results demonstrate that improved mixing can be achieved with a decrease in inlet velocity and channel height. Moreover, the flame blow-off limit is the largest for a micro-combustor with H0 = 0.6 mm; the flame becomes inclined at a high velocity and the direction varies with the inlet velocity. Furthermore, a micro-combustor with a medium height (H0 = 1.0 mm) can achieve the largest blowout limit among the three cases. Finally, for identical inlet velocities, the combustion efficiency increases with decreasing combustor height. In summary, these findings can provide a guideline for the optimal design of such micro-combustors.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,