Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7705824 | International Journal of Hydrogen Energy | 2018 | 10 Pages |
Abstract
Rotating detonation engines have attracted considerable attentions in recent years. In this study, the experiments of initiating rotating detonation waves were performed on a H2/air rotating detonation wave with the variable air-inlet slot. The results showed that the stability of detonation-wave pressure and velocity both initially increased and then decreased with the increase of slot width, and it could improve the stability of detonation-wave velocity via increasing the equivalence ratio. The intensity of reflected wave was strong for the tests of d = 0.5 mm, which leaded to the advance ignition of fresh mixture and a velocity deficit reaching up to 20%. The strong interaction between air plenum and combustor and bad mixing effect may be the reasons of forming unstable detonation wave for the tests of large-scale slots. The air-inlet slot of d = 1 mm, which got a best experiment results relative to other tests, had a wide equivalence-ratio scope to produce stable detonation wave.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Shengbing Zhou, Hu Ma, Shuai Li, Changsheng Zhou, Daokun Liu,