| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7706292 | International Journal of Hydrogen Energy | 2018 | 9 Pages |
Abstract
A novel investigation to decrease the interfacial contact resistance of stainless steel bipolar plates was performed. A thin layer of Sn was electrodeposited onto a bipolar plate and subsequently joined with a gas diffusion layer through hot-pressing at a temperature around the melting point of tin. This procedure was optimised, depositing 30 μm of Sn onto the stainless steel bipolar plate before hot-pressing at 230 °C and 0.5 bar for 20 min. A contact resistance of 5.45 mΩ cm2 at 140 N cmâ2 was obtained, with low values maintained after exposure to both in-situ and ex-situ conditions. The in-situ testing in a fuel cell produced excellent results, with minor increases in contact resistance from 8.8 to 9.2 mΩ cm2 and decreases in cell voltage from 0.714 to 0.667 V after 200 h of operation. These values are comparable to gold plated stainless steel, showing that combining a gas diffusion layer with electrodeposited Sn through hot-pressing is a promising low-cost coating for bipolar plates in PEM fuel cells.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Katie McCay, Ole Edvard Kongstein, Anders Oedegaard, Alejandro Oyarce Barnett, Frode Seland,
