Article ID Journal Published Year Pages File Type
7707049 International Journal of Hydrogen Energy 2018 8 Pages PDF
Abstract
The hydrogen tightness of high-pressure hydrogen storage is a basic criterion for long-term storage. The H2 permeation coefficients of epoxy resin and a glass lacquer were determined to enable the geometric optimization of a glass capillary storage. It was found that the curing conditions have no significant influence on the H2 permeation coefficient of resin. The H2 permeation coefficient of epoxy resin is only about three orders of magnitude greater than that of borosilicate glass. This suggests that the initial pressure of 700 bar takes about 2.5 years to be halved in capillary array storage. Therefore, a high-pressure hydrogen storage tank based on glass capillaries is ideally suited for long-term storage in mobile applications.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,