Article ID Journal Published Year Pages File Type
7707355 International Journal of Hydrogen Energy 2018 7 Pages PDF
Abstract
Relationships between flame lift-off heights and reservoir pressure were experimentally investigated in order to clarify blow-off process of hydrogen non-premixed jet flames with a highly under-expanded jet structure. In this study, straight nozzles with diameters of 0.34, 0.53, 0.75 and 1.12 mm were used with maximum reservoir pressure for spouting hydrogen of 13.2 MPa. Experimental results are shown that lift-off heights in stable under-expanded jet flames do not vary significantly and are independent of the reservoir pressure in the range of studied pressure. However, the lifted heights are affected by the nozzle diameters and become smaller as the nozzle diameters increase. From experimental results, the condition for the blow-off process of under-expanded subsonic jet flames was proposed. It was concluded that the under-expanded jet flame could be blown off when the maximum waistline position, where radial distance from the jet axis to an elliptic stoichiometric contour reaches its maximum comes closer to the nozzle exit than the edge of the jet flame base.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,