Article ID Journal Published Year Pages File Type
7707357 International Journal of Hydrogen Energy 2018 10 Pages PDF
Abstract
In this study, we elucidated the effects of the addition of various mesoporous silicates (0-20 wt%) to the membranes used for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) on cell performance. Two types of polybenzimidazole (PBI)-based hybrid membranes were prepared by homogeneously dispersing a predetermined amount of MCM-41 or SBA-15 within the PBI matrix. Compared to the pure PBI membrane, those with MCM-41 and SBA-15 exhibited significantly enhanced phosphoric acid doping and better mechanical properties, leading to improved HT-PEMFC performance and reduced acid migration. However, the membranes with 20 wt% silicate showed inferior performance compared to those with 10 wt% silicate. In addition, the membranes with SBA-15 exhibited noticeable aggregation, lower phosphoric acid doping, and greater phosphoric acid migration during the leaching test than did the membranes with MCM-41. Finally, during the short-term durability test, the PBI/MCM-41 (10 wt%) membrane showed the best performance (maximum power density of 310  mW cm−2).
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,