Article ID Journal Published Year Pages File Type
7707411 International Journal of Hydrogen Energy 2018 17 Pages PDF
Abstract
Biomass as a renewable fuel compared to fossil fuels usually contains high moisture content and volatile release. Hydrogen production by large particle biomass gasification is a promising technology for utilizing high moisture content biomass particle in the high temperature fluidized bed reactor. In the present work, simulation of large particles biomass gasification investigated at high temperature by using the discrete phase model (DPM). Combustible gases with homogeneous gas phase reactions, drying process with a heterogeneous reaction, primary and secondary pyrolysis with independent parallel-reaction by using two-competing-rate model to control a high and low temperature were used. During the thermochemical process of biomass, gaseous products containing of H2, H2O, CH4, CO and CO2 was obtained. The effects of concentration, mole and mass fraction and hydrodynamics effects on gaseous production during gasification were studied. The results showed that hydrodynamic effect of hot bed is different from cold bed. Concentration and molar fraction of CO and H2 production by continually and stably state and small amount of CO2, H2O, and CH4 was obtained. The hydrodynamic of bed plays the significant role on the rate of gaseous products.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,