Article ID Journal Published Year Pages File Type
7707661 International Journal of Hydrogen Energy 2018 6 Pages PDF
Abstract
The anode configuration and gas management strategy are two of factors that affect the energy efficiency of a proton exchange membrane fuel cell. In order to improve the hydrogen utilization, unused hydrogen can be recirculated to the inlet using a pump. However, impurities diffusing from the cathode to the anode may cause the dilution of hydrogen in the anode. As a result, a gas management strategy is required for the anode recirculation configuration. In this preliminary study, a novel configuration for anode recirculation and a gas management strategy are proposed and verified by experiments. Two valves are installed in the recirculation line. The anode is operated in four modes (dead-end, recirculation, compression, and purge), and the real-time local current density (LCD) is monitored for gas management purposes. The results show that the LCD distribution is uniform during the recirculation mode and nonuniform during the dead-end and compression modes. With this configuration and gas management strategy, the cycle duration is increased by a factor of 6.5.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,