Article ID Journal Published Year Pages File Type
7708460 International Journal of Hydrogen Energy 2018 8 Pages PDF
Abstract
The paper discusses the peculiarities of flame propagation in the ultra-lean hydrogen-air mixture. Numerical analysis of the problem shows the possibility of the stable self-sustained flame ball existence in unconfined space on sufficiently large spatial scales. The structure of the flame ball is determined by the convection processes related to the hot products rising in the terrestrial gravity field. It is shown that the structure of the flame ball corresponds to the axisymmetric structures of the gaseous bubble in the liquid. In addition to the stable flame core, there are satellite burning kernels separated from the original flameball and developing inside the thermal wake behind the propagating flame ball. The effective area of burning expands with time due to flame ball and satellite kernels development. Both stable flame ball existence in the ultra-lean mixture and increase in the burning area indicate the possibility of transition to rapid deflagrative combustion as soon as the flame ball enters the region filled with hydrogen-air mixture of the richer composition. Such a scenario is intrinsic to the natural spatial distribution of hydrogen in the conditions of terrestrial gravity and therefore it is crucial to take it into account in elaborating risk assessments techniques and prevention measures.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,