Article ID Journal Published Year Pages File Type
7709723 International Journal of Hydrogen Energy 2017 7 Pages PDF
Abstract
The corrosion of low-cost, easily manufactured metallic components inside the electrochemical environment of proton exchange membrane electrolyzer cells (PEMECs) has a significant effect on their performance and durability. In this study, 316 stainless steel (SS) mesh was used as a model liquid/gas diffusion layer material to investigate the migration of corrosion products in the catalyst-coated membrane of a PEMEC. Iron and nickel cation particles were found distributed throughout the anode catalyst layer, proton exchange membrane, and cathode catalyst layer, as revealed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The results indicate the corrosion products of 316 SS are transported from anode to cathode through the nanochannels of the Nafion membrane, resulting in impeded proton transport and overall PEMEC performance loss.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , , , , ,