Article ID Journal Published Year Pages File Type
7713527 International Journal of Hydrogen Energy 2015 11 Pages PDF
Abstract
The durability of polymer electrolyte membrane fuel cells (PEMFC) is governed by a nonlinear coupling between system demand, component behavior, and physicochemical degradation mechanisms, occurring on timescales from the sub-second to the thousand-hour. We present a simulation methodology for assessing performance and durability of a PEMFC under automotive driving cycles. The simulation framework consists of (a) a fuel cell car model converting velocity to cell power demand, (b) a 2D multiphysics cell model, (c) a flexible degradation library template that can accommodate physically-based component-wise degradation mechanisms, and (d) a time-upscaling methodology for extrapolating degradation during a representative load cycle to multiple cycles. The computational framework describes three different time scales, (1) sub-second timescale of electrochemistry, (2) minute-timescale of driving cycles, and (3) thousand-hour-timescale of cell ageing. We demonstrate an exemplary PEMFC durability analysis due to membrane degradation under a highly transient loading of the New European Driving Cycle (NEDC).
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,