Article ID Journal Published Year Pages File Type
7716595 International Journal of Hydrogen Energy 2015 10 Pages PDF
Abstract
In the present study, direct steam reforming of diesel and diesel blends (7 vol.% biodiesel) is investigated at various operating conditions using a proprietary precious metal catalyst. The experimental results show a detrimental effect of low catalyst inlet temperatures and high feed mass flow rates on catalyst activity. Moreover, tests with a desulfurized diesel-biodiesel blend indicate improved long-term performance of the precious metal catalyst. By using deeply desulfurized diesel (1.6 ppmw sulfur), applying a high catalyst inlet temperature (>800 °C), a high steam-to-carbon ratio (S/C = 5) and a low feed mass flow per open area of catalyst (11 g/h cm2), a stable product gas composition close to chemical equilibrium was achieved over 100 h on stream. Catalyst deactivation was not observed.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,