Article ID Journal Published Year Pages File Type
7718305 International Journal of Hydrogen Energy 2014 8 Pages PDF
Abstract
In this paper, the high concentration of corn stalk (60 g/L) was employed as feedstock to produce bio-hydrogen and methane by combining hydrogen fermentation and anaerobic digestion. In the first stage of hydrogen fermentation, the effects of several key parameters, such as strain enhancement technique, cetyl trimethyl ammonium bromide (CTAB), NH4HCO3 on hydrogen production from cornstalk were investigated and optimized. The maximum hydrogen yield of 79.8 ± 1.5 ml H2/g-TS and hydrogen production rate of 3.78 ml/g-cornstalk h was observed at fixed acidizing cornstalk of 60 g/L, strains Bacillus sp. FS2011 dosage of 10%(v/v), CTAB of 30 mg/L, NH4HCO3 of 1.2 g/L and initial pH of 7.5 ± 0.5 at 36 ± 1 °C, respectively. In the second stage of anaerobic digestion, the effluent from hydrogen production bio-reactor was further employed as the feedstock to produce methane by methanogenic bacteria, the maximum methane yield of 227 ± 2.5 ml CH4/g-COD and COD removal rate of 95  ± 1% was recorded. The interesting observations were that the total amount of the organic wastewater produced in a higher substrate concentration (60 g/l) by hydrogen fermentation was reduced by about two-thirds compared with that of traditional low substrate concentration (≤20 g/l).
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,