Article ID Journal Published Year Pages File Type
7718539 International Journal of Hydrogen Energy 2014 5 Pages PDF
Abstract
The effects of substitution of Pr by Mg in PrNi3 with a PuNi3-type structure were investigated using pressure-composition (P-C) isotherm measurements and X-ray diffraction. The unit cell of Pr0.68Mg0.32Ni3.04 contracted anisotropically in comparison to that of PrNi3. The maximum hydrogen capacity of PrNi3 reached 1.25 H/M in the first absorption. A plateau region was observed between 0.82 H/M and 1.04 H/M in the first absorption cycle. However, 0.85 H/M of hydrogen remained in the sample after the first full desorption. Pr0.68Mg0.32Ni3.04 showed reversible hydrogenation properties. The maximum hydrogen capacity was 1.22 H/M. The plateau region of Pr0.68Mg0.32Ni3.04 was between 0.08 H/M and 0.87 H/M, which was wider than that of PrNi3. Pr0.68Mg0.32Ni3.04 retained the PuNi3-type structure after hydrogenation, whereas the crystal structure of PrNi3 changed from that of PuNi3-type to an unknown structure. The structural change in PrNi3 during hydrogenation was evidently different from that in Pr0.68Mg0.32Ni3.04.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,