Article ID Journal Published Year Pages File Type
7719382 International Journal of Hydrogen Energy 2014 8 Pages PDF
Abstract
The dehydrogenation/hydrogenation properties of LiBH4-xMg(OH)2 were systematically investigated. The results show that the LiBH4-0.3Mg(OH)2 composite possesses optimal dehydrogenation properties: approximately 9.6 wt% of hydrogen is released via a stepwise reaction with an onset temperature of 100 °C. In the range of 100-250 °C, a chemical reaction between LiBH4 and Mg(OH)2 first occurs to give rise to the generation of LiMgBO3, MgO and H2. From 250 to 390 °C, the newly developed LiMgBO3 reacts with LiBH4 to form MgO, Li3BO3, LiH, B2O3 and Li2B12H12 with hydrogen release. From 390 to 450 °C, the decomposition of LiBH4 and Li2B12H12 proceeds to release additional hydrogen and to form LiH and B. A further hydrogenation experiment indicates that the dehydrogenated LiBH4-0.3Mg(OH)2 sample can take up 4.7 wt% of hydrogen at 450 °C and 100 bar of hydrogen with good cycling stability, which is superior to the pristine LiBH4.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,