Article ID Journal Published Year Pages File Type
7719451 International Journal of Hydrogen Energy 2014 11 Pages PDF
Abstract
In this paper, production of hydrogen from concentrated solar radiation is examined by a laboratory scale solar tower system that is capable of handling continuous flow photocatalysis. The system is built and studied under a solar simulator with an aiming area of 20 × 20 cm2. The fraction of solar spectrum useful for water splitting depends on the energy band gap of the selected photocatalyst. Two types of nano-particulate photocatalysts are used in this work: ZnS (3.6 eV) and CdS (2.4 eV). The effect of light concentration on photocatalysis performance is studied using Alfa Aesar 99.99% pure grade, 325 mesh ZnS nano-particles. An improved quantum efficiency of 73% is obtained as compared to 45% with the same sample under non-concentrated light in a previous study. Only 1.1% of the energy of the solar radiation spectrum can be used by ZnS catalyst. A mixture of CdS and ZnS nano-particulate photocatalysts (both Alfa Aesar 99.99% pure grade, 325 mesh) is used to conduct a parametric study for a wider spectrum capture corresponding to 18% of the incident energy. Hydrogen production increases from 0.1 mmol/h to 0.21 mmol/h when the operating conditions are varied from 25 °C and 101 kPa to 40 °C and 21 kPa absolute pressures. Furthermore, the implementation of a continuous flow process results in an improvement in the energy efficiency by a factor of 5.5 over the batch process.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,