Article ID Journal Published Year Pages File Type
7720200 International Journal of Hydrogen Energy 2014 10 Pages PDF
Abstract
A two-dimensional transient model for a passive thermal management system was developed for commercial square lithium ion battery by using the phase change material (PCM) of paraffin saturated in metallic copper foam. This model combined the thermo-electrochemical model for the battery and a model that characterized the solid-liquid phase change of paraffin in copper foam. The thermo-electrochemical model was composed of species conservation, charge conservation, and energy balance equations. In the model of phase change in metal foam, the non-Darcy, natural convection of melted paraffin, and local thermal non-equilibrium effects were considered. The thermo-electrochemical performance of the battery and convective heat transfer behavior of the foam-PCM composite were investigated. The predicted results were in agreement with experimental data. Compared to the air convection and adiabatic modes, the thermal management by foam-PCM composite has dramatically reduced battery surface temperature to the allowable range at 1C and 3C discharge rates.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,