Article ID Journal Published Year Pages File Type
7721258 International Journal of Hydrogen Energy 2013 8 Pages PDF
Abstract
Graphite nanoplatelets (GNPs), which consist of layers of graphene, are an ideal electrocatalyst support due to their high electrical and thermal conductivity, excellent chemical stability, and easy availability. However, GNPs are somewhat chemically inert, which makes the even deposition of catalytic metal nanoparticles on their surface difficult. In this paper, we present a facile method to prepare highly uniform Pt nanoparticles on GNPs, which are decorated with 1-pyrenecarboxylic acid (PCA). When the hydrophobic pyrene group of the PCA is adsorbed on the surface of GNPs via π-π interaction, its carboxylic group can serve as an anchor for the Pt deposition. This decoration facilitates a narrow size profile, which is centered at approximately 2-3 nm, and an even spatial distribution on the GNPs surface for the Pt nanoparticles. The resultant Pt/GNPs catalyst exhibits a noticeably higher durability and electrochemical activity than the commonly used Pt/C catalyst and is therefore a promising cathodic catalyst for proton exchange membrane fuel cells.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,