Article ID Journal Published Year Pages File Type
7721426 International Journal of Hydrogen Energy 2013 8 Pages PDF
Abstract
The effect of different additive ammonia (0-10 g/l as nitrogen) on hydrogen production from the anaerobic batch mesophilic fermentation of food waste was studied at two feed-to-microorganism ratios (F/M), 3.9 and 8.0. Anaerobic sludge taken from an anaerobic digester was used as inoculum. The hydrogen yield at F/M 3.9 and 8.0 without additive ammonia was 77.2 and 51.0 ml-H2/gVS, respectively. At F/M 3.9, the hydrogen production was enhanced by adding additive ammonia in the system when the total ammonia nitrogen (TAN) concentration was no higher than 6.0 g/l. A maximum hydrogen yield of 121.4 ml-H2/gVS was obtained at a TAN concentration of 3.5 g/l. At F/M 8.0, the enhancement of hydrogen production was found in a narrower range of additive TAN concentrations, with a highest yield of 60.9 ml-H2/gVS at the TAN of 1.5 g/l. Hydrogen production was inhibited at higher additive TAN concentrations for both F/M ratios. This study provides a novel strategy for controlling ammonia for production of hydrogen from food waste via anaerobic fermentation.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,