Article ID Journal Published Year Pages File Type
7721778 International Journal of Hydrogen Energy 2013 8 Pages PDF
Abstract
Glycerol is an inevitable by-product from biodiesel synthesis process and could be a promising feedstock for fermentative hydrogen production. In this study, the feasibility of using crude glycerol from biodiesel industry for biohydrogen production was evaluated using seven isolated hydrogen-producing bacterial strains (Clostridium butyricum, Clostridium pasteurianum, and Klebsiella sp.). Among the strains examined, C. pasteurianum CH4 exhibited the best biohydrogen-producing performance under the optimal conditions of: temperature, 35 °C; initial pH, 7.0; agitation rate, 200 rpm; glycerol concentration, 10 g/l. When using pure glycerol as carbon source for continuous hydrogen fermentation, the average H2 production rate and H2 yield were 103.1 ± 8.1 ml/h/l and 0.50 ± 0.02 mol H2/mol glycerol, respectively. In contrast, when using crude glycerol as the carbon source, the H2 production rate and H2 yield was improved to 166.0 ± 8.7 ml/h/l and 0.77 ± 0.05 mol H2/mol glycerol, respectively. This work demonstrated the high potential of using biodiesel by-product, glycerol, for cost-effective biohydrogen production.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,