Article ID Journal Published Year Pages File Type
7721869 International Journal of Hydrogen Energy 2013 9 Pages PDF
Abstract
The mechanisms of the influence of hydrogen enrichment on the combustion and emission characteristics of an n-heptane fuelled homogeneous charge compression ignition (HCCI) engine was numerically investigated using a multi-zone model. The model calculation successfully captured the most available experimental data. The results show that hydrogen addition retards combustion phasing of an n-heptane fuelled HCCI engine due to the dilution and chemical effects, with the dilution effect being more significant. It is because of the chemical effect that combustion duration is reduced at a constant compression ratio if an appropriate amount of hydrogen is added. As a result of retarded combustion phasing and reduced combustion duration, hydrogen addition increases indicated thermal efficiency at a constant combustion phasing. Hydrogen addition reduces indicated specific unburned hydrocarbon emissions, but slightly increases normalized unburned hydrocarbon emissions that are defined as the emissions per unit burned n-heptane mass. The increase in normalized unburned hydrocarbon emissions is caused by the presence of more remaining hydrocarbons that compete with hydrogen for some key radicals during high temperature combustion stage. At a given hydrogen addition level, N2O emissions increases with overly retarding combustion phasing, but hydrogen addition moderates this increase in N2O emissions.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,