Article ID Journal Published Year Pages File Type
7724 Biomaterials 2010 11 Pages PDF
Abstract

Efficacious hemostatic agents have significant potential for use in rapid exsanguinating hemorrhage control by emergency medical technician or military medic nowadays. Unfortunately, the topical hemostats currently available in market still have various disadvantages. In this study, a series of macroporous chitosan coated mesoporous silica xerogel beads (CSSX) with good biocompatibility were developed. They consisted of mesoporous silica xerogel cores and chitosan layers with macroporous structure by using modified sol-gel process and PEG molecular imprinting technique. The textural properties of the CSSX beads were optimized by in vitro and in vivo evaluation for promoting blood clotting and the results indicated that the prepared CSSX beads can significantly accelerate the contact activation pathway of coagulation cascade and produce desirable hemostasis, with the best efficiency from the CSSX prepared with 2% chitosan and 5% PEG. Furthermore, these CSSX beads were observed to create no exothermic reaction and the subsequential tissue thermal injury by histological examination, and exhibited no obvious cytotoxicity even after 7 days. The results of the present study forward CSSX bead as a safe hemostatic system and present a platform for further optimization studies of materials with enhanced hemostatic capabilities for specific injury types.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,