Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
774459 | European Journal of Mechanics - A/Solids | 2009 | 11 Pages |
A fully kinematical, mixed finite element approach based on a recent interior point method for convex optimization is proposed to solve the limit analysis problem involving homogeneous Gurson materials. It uses continuous or discontinuous quadratic velocity fields as virtual variables, with no hypothesis on a stress field. Its modus operandi is deduced from the Karush–Kuhn–Tucker optimality conditions of the mathematical problem, providing an example of cross-fertilization between mechanics and mathematical programming. This method is used to solve two classical problems for the von Mises plasticity criterion as a test case, and for the Gurson criterion for which analytical solutions do not exist. Using only the original plasticity criterion as material data, the method proposed appears robust and efficient, providing very tight bounds on the limit loadings investigated.