Article ID Journal Published Year Pages File Type
77475 Microporous and Mesoporous Materials 2007 7 Pages PDF
Abstract

The enhancement of the electrical conductivity (EC) of a porous carbon is highly desirable in many applications, especially in those associated with storage and conversion of electrochemical energy. In this work, we demonstrated an approach to largely increasing the EC of ordered mesoporous carbon (OMC) by bridging the OMC particles with carbon nanotubes (CNTs). Infiltration of the pores of ordered mesoporous SBA-15 silica with a carbon precursor yielded a carbon/mesoporous silica composite, which was further used as a support for Ni catalyst. Subsequently, catalytic growth of CNTs on the Ni-supported composite surface was carried out using the chemical vapor deposition (CVD) method with benzene as the carbon precursor. Removal of the silica framework and the metal catalyst left behind OMC particles bridged with CNTs. The EC of the OMC was increased from 138 S/m (before bridging) to 645 S/m (after bridging). Because of the significant enhancement of EC and the availability of mesopores, the cyclability of the hybrid carbon materials as a negative electrode used in rechargeable lithium-ion batteries was significantly improved.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,