Article ID Journal Published Year Pages File Type
77610 Solar Energy Materials and Solar Cells 2016 7 Pages PDF
Abstract

•n-type rear-emitter photovoltaic modules undergo potential-induced degradation.•Degradation under negative bias is due to enhanced surface recombination.•Degradation under positive bias is almost identical to “polarization effect”.•n-type rear-emitter photovoltaic modules have high PID-resistance.

This study addresses the potential-induced degradation (PID) of n-type single-crystalline silicon (sc-Si) photovoltaic (PV) modules with a rear-side emitter. The n-type rear-emitter module configurations were fabricated using n-type bifacial sc-Si solar cells by module lamination with the p+ emitter side down. After the PID tests applying −1000 V, the modules show a rapid decrease in the open-circuit voltage (Voc)(Voc), followed by relatively slower reductions in the fill factor and the short-circuit current density (Jsc)(Jsc). Their dark current density–voltage (J–V  ) data and external quantum efficiencies (EQEs) indicate that the drop in VocVoc is caused by an increase in the saturation current density due to the enhanced surface recombination of minority carriers. In contrast, the modules exhibit slight degradation under +1000 V, which is characterized by only slight decreases in VocVoc and JscJsc. The EQE measurement reveals that these decreases are also attributed to the enhanced surface recombination of minority carriers. This behavior is almost identical to that of the polarization effect in n-type interdigitated back contact PV modules reported in a previous study. By comparing the PID resistance with that of other types of modules, the n-type rear-emitter PV modules are relatively resistant to PID. This may become an advantage of the n-type rear-emitter PV modules.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,