Article ID Journal Published Year Pages File Type
780353 International Journal of Mechanical Sciences 2008 10 Pages PDF
Abstract

The present investigation is concerned with free vibration analysis of laminated composite plates resting on elastic foundation undergoing large amplitude oscillation with random system properties. The lamina material properties and foundation stiffness parameters are modeled as basic random variables for accurate prediction of the system behavior. The basic formulation of the problem is based on higher-order shear displacement theory including rotatory inertia effects and von Karman-type nonlinear strain displacement relations. A C0 finite element is used for descretization of the laminate. A direct iterative method in conjunction with first-order Taylor series based perturbation technique procedure is developed to solve random nonlinear generalized eigenvalue problem. The developed probabilistic procedure is successfully used for the nonlinear free vibration problem with a reasonable accuracy. Typical numerical results (second-order statistics) are obtained for the composite plates resting on Winkler and Pasternak elastic foundations with different support conditions, side-to-thickness ratio, aspect ratio, oscillation amplitude ratio, stacking sequences and foundation parameters for symmetric and anti-symmetric cross-ply and angle-ply laminates. The results are validated with existing available results and independent Monte Carlo simulation.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,