Article ID Journal Published Year Pages File Type
7809183 Journal of Molecular Structure 2017 7 Pages PDF
Abstract
In this work, aluminum-27 and phosphorus-31 NMR spectroscopic techniques were used to investigate and characterize the distribution of aluminophosphate (AlPO) species soluble in the aqueous and methanolic solutions of tetraphenylammonium (TPhA) chloride. The reaction between hexaaquaaluminum cations, [A1(H2O)6]3+, and different phosphate ligands such as H3PO4, H2PO4−, and the acidic dimers H6P2O8 and H5P2O8− resulted in the formation of the soluble AlPO cations. The effective aluminum-27 and phosphorous-31 NMR spectroscopies can be employed to characterize the species present in a solution. Assignment of the peaks present in the aluminum-27 NMR spectra to the aluminate species or aluminate connectivities was done to acquire information about different AlPO complexes. Some resonance lines were observed in the phosphorus-31 {1H} NMR spectra, indicating the existence of different complexes in the AlPO solutions. Some peaks were observed in the methanolic solutions of AlPO at the chemical shifts of −0.41, −6.4, −7.5, −7.9, −13.1, −13.9, −16.6, −18.1, and −20.6 ppm. Four additional peaks were also observed in the phosphorus-31 {1H} NMR spectra of the methanolic solutions of AlPO, whose intensities changed with changes in the methanol:water volume ratio; they were observed in methanol but not in aqueous AlPO.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,