Article ID Journal Published Year Pages File Type
7823 Biomaterials 2011 10 Pages PDF
Abstract

We previously reported the preparation and characterization of ternary nanoparticles with the negative surface charge, which comprises histidine-conjugated polyallylamine (PAA-HIS)/DNA core complex and a single-stranded oligonucleotide outer layer, to transfect various cell lines. As a continued effort, here the investigations on the endocytotic mechanisms involved in the uptake of the oligonucleotide-coated PAA-HIS/DNA complexes are reported. Interestingly, these complexes showed enhanced transfection efficiency only when deoxyadenosine-containing oligonucleotides were deposited on the PAA-HIS/DNA complex surface. The addition of uncomplexed oligonucleotide, free adenosine and adenosine receptor antagonist significantly inhibited the transfection efficiency of oligonucleotide-coated PAA-HIS/DNA complexes. These results indicated that the oligonucleotide-coated PAA-HIS/DNA complexes could specifically recognize adenosine receptors on the cell surface and were taken up by adenosine receptor-mediated process. Uptake and transfection experiments with various endocytic inhibitors suggested that, after receptor/ligand binding, oligonucleotide-coated PAA-HIS/DNA/complexes were mainly internalized via caveolae-mediated pathway to result in effective intracellular processing for gene expression. In conclusion, both adenosine receptor and caveolae-mediated endocytosis play important roles in oligonucleotide-mediated gene transfer.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,