Article ID Journal Published Year Pages File Type
786592 International Journal of Plasticity 2007 34 Pages PDF
Abstract

Most rate-independent constitutive relations for granular materials are based on the existence of a regular flow rule. This assumption states that once the mechanical state of a material point belongs to the yield surface, then the direction of the plastic strains is independent of the loading direction. In this paper, the notion of a regular flow rule is shown to exist only for two-dimensional and axisymmetric loading conditions. By considering our incrementally nonlinear constitutive model, it is established that this notion disappears as soon as more general loading conditions are applied, as also predicted from discrete element simulations. Moreover, a sound micro-mechanical interpretation of the vanishing of a regular flow rule in three-dimensional loading conditions is given from a multi-scale perspective using the micro-directional model. This model highlights the great influence of the loading history on the shape of the plastic Gudehus response-envelope.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,